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We present a closed form for the governing equations of chemically reacting flows under local thermody-
namic equilibrium, which rigorously takes into account effects of elemental �de�mixing. To this end, we show
that when chemistry is fast, the diffusion fluxes of elements and species enthalpies can be expressed as explicit
linear functions of gradients of elemental mass fractions and temperature. Our formulation is a natural exten-
sion of classical work on local equilibrium flows by other authors and yields results equivalent with a recent
fully rigorous mathematical theory in a straightforward and physically appealing manner. The obtained set of
equations is well-suited for numerical implementations and does not require the computationally expensive
evaluation of thermodynamic derivatives using finite differences. The new transport coefficients that appear in
the equations allow quantitative predictions and help to gain deeper insight into the physics of chemically
reacting flows at and near local equilibrium.
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I. INTRODUCTION

The physics of collision-dominated chemically reacting
flows is described by an extended Navier-Stokes system,
consisting of the following equations �1�:

�1� global continuity, momentum, and total energy;
�2� a separate continuity equation for each species, in-

cluding finite-rate chemistry;
�3� if thermal nonequilibrium occurs, an energy equation

for each additional mode of freedom �vibrational, rotational,
and electronic energies�.
This formalism has several drawbacks. First, the equations
are costly to implement and solve numerically. Second, many
physical parameters essential for the modeling of chemistry
and energy relaxation processes are usually missing. Third,
even when a numerical solution is obtained, it is by no
means obvious to interpret the vast amount of information
obtained �e.g., concentration fields of a large number of
chemical species�. For these reasons, when chemistry and
energy exchanges are fast, it is usually preferable to solve the
more elegant and less uncertain local thermodynamic equi-
librium �LTE� form of the aforementioned set of equations.

A major breakthrough in the field of LTE flow modeling
was made by Butler and Brokaw �2,3�, who showed that,
assuming vanishing diffusive fluxes of chemical elements,
the diffusive transport of species reaction enthalpies in the
energy equation could be incorporated in a straightforward
manner by introducing a coefficient of “thermal reactive con-
ductivity” �R:

�
s=1

Nsp

Wshs = − �R � T . �1�

One often makes use of this result to reduce the full set of
nonequilibrium equations to a system formally equivalent to
the “conventional” Navier-Stokes equations �continuity, mo-
mentum, and energy�, complemented by a modified equation
of state ��p ,T� computed from statistical mechanics assum-
ing a fixed elemental composition in the flow. For instance,
Vasil’evskii et al. �4� successfully used this classical LTE
formalism to simulate high-pressure air inductively coupled
plasma flows, imposing a 21/79 volumetric ratio of oxygen
and nitrogen elements throughout the flow field.

While appealing because of its simplicity, it is important
to understand that this approach is approximate at best, since
in general the elemental composition varies significantly in
chemically reacting flows:

�1� Mixing: consider, e.g., low-speed diffusion flames, in
which fuel and air are injected through different inlets and
gradually mix.

�2� Demixing: consider, e.g., a thermal arc or inductive
plasma torch. The kinetic theory of gases in general predicts
nonzero elemental diffusion fluxes whenever the composi-
tion of the mixture varies due to chemical reactions. Thus
variations in elemental composition appear even when the
inflow elemental composition is uniform �5,6�.
We know of no mixture containing more than a single ele-
ment that can simultaneously satisfy the constraints of uni-
form elemental composition and vanishing elemental fluxes
when chemical reactions occur.

Over the past four decades, several LTE formulations ac-
counting for �de�mixing effects have been proposed.
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As pointed out by Murphy �5�, a first quantitative expla-
nation of demixing effects was presented in a series of papers
by Frie and Maecker, in which they classified and discussed
the significance of the different processes that drive demix-
ing �7–10�, and in a paper by Richter �11�, who measured the
degree of demixing in arcs in mixtures of argon, nitrogen,
helium, and hydrogen, and explained his results in a manner
similar to Frie and Maecker.

Suslov et al. �12� presented a general theoretical descrip-
tion of mixtures of chemically reacting gases under chemical
equilibrium where �de-�mixing is taken into account by solv-
ing a set of elemental continuity equations. Although valid
for any mixture of partially ionized gases, the proposed
theory does not provide any explicit relation between el-
emental diffusion fluxes and temperature, pressure, or el-
emental concentration gradients and requires the solution of
the Stefan-Maxwell equations �13,14� for given concentra-
tion gradients of species in the gas mixture. This formula-
tion, which has been further improved in two more recent
papers due to G. A. Tirsky �15,16�, is in our opinion the most
complete and accurate available description of LTE flows at
present. While the formulation presented here is mathemati-
cally equivalent to the work of these references, it has the
advantage of leading to a more physically appealing explic-
itly closed formalism that is obtained using a considerably
more straightforward mathematical derivation.

Vasil’evskii and Tirsky analyzed the influence of elemen-
tal separation within equilibrium air boundary layers �17�
near heat-shields of atmospheric �re-�entry capsules, and ob-
served volumetric oxygen concentrations varying between
0.15 and 0.3 �when the far-field value is 0.23�. In a succes-
sive study �18�, Vasil’evskii investigated the influence of
these effects on wall heat flux and observed variations of
3–10% depending on the wall boundary conditions.

Kovalev and Suslov investigated diffusive separation of
chemical elements on a catalytic surface in Ref. �19�. Using
an asymptotic expansion of the solution of the boundary
layer equations for a multicomponent air mixture in chemical
nonequilibrium for large Schmidt numbers, it was shown that
an excess of a mixture element can be observed on the body
under certain outer flow conditions.

Murphy �5,20–22� has investigated effects of elemental
demixing in thermal arc-plasmas and points out that demix-
ing occurs regardless of the degree of nonequilibrium in the
plasma. Thus, even in the LTE case, an additional continuity
equation needs to be included for the mass fraction of each
element in the gas mixture. He presents an LTE model which
allows computation of demixing in binary mixtures of homo-
nuclear gases, which do not mutually react. While rigorous,
his model cannot be applied to the more general case when
species composed of various nuclei appear. For instance, an
air plasma, which consists of nitrogen and oxygen nuclei,
will contain mixed species such as NO which cannot be de-
scribed by this theory. The appearance of explicit thermody-
namic derivatives in his theory is troublesome from a nu-
merical point of view: their evaluation by means of finite
differences is in general very costly because for each finite
difference the mixture composition needs to be recomputed
using a Newton iterative solver. In the particular case of a
mixture containing only two elements, the computational

cost can be reduced by computing the thermodynamic de-
rivatives only once and storing the data in tabular form.
Then, in the framework of computation fluid dynamics
�CFD� codes, the tabulated coefficients can be accessed and
interpolated as required. However, when the number of ele-
ments present in the mixture increases beyond two, this ap-
proach requires multidimensional interpolations, whose cost
rapidly increases with the number of elements. In spite of the
limitations of his theory, Murphy should be given credit for
having presented the first closed LTE formulation and for
having introduced the concept of elemental combined and
thermal diffusion coefficients.

Ern and Giovangigli �23� introduced the concept of el-
emental multicomponent diffusion coefficients for general
nonionized gas mixtures under LTE using two different ap-
proaches: �1� by deriving the Navier- Stokes equations di-
rectly from the LTE form of the Boltzmann equation or �2�
by considering the Navier-Stokes equations for flows under
chemical nonequilibrium and letting chemical reactions ap-
proach equilibrium. They point out that the reduced sets of
equations obtained are formally similar but contain different
transport coefficients. The abstract mathematical framework
underlying their theory is its strength and weakness at once:
while the mathematical rigor of the model is impressive, the
proposed analysis is accessible only to those with a strongly
mathematical mind-set and no particular effort is made to
explain the physical implications of the model. As in Mur-
phy’s work, explicit thermodynamic derivatives remain in
the final expressions. The paper remains at a theoretical level
and no numerical values of elemental transport coefficients
are computed; rather, it is concluded that it is more advanta-
geous to retain the species diffusion velocities in the govern-
ing equations, which leads us back to an open formulation
essentially equivalent to the one proposed by Suslov et al.
�12�. We disagree with this conclusion and will argue that
computing the LTE transport coefficients �Figs. 2–5� is not
only more advantageous from a numerical point of view but
also reveals a lot of interesting physics.

Van der Heijden �24� has proposed an alternative LTE
model in his study of demixing in a Hg/Na/ I metal halide
lamp. His formulation is based upon a Fick-type diffusion
model, which can only be applied when a minority species
diffuses with respect to a background species, which is
present in overwhelming quantities �mercury, in his case�.

The present authors have recently performed calculations
of air and carbon dioxide flows under LTE �6,25,26� using an
open formulation similar to the one of Suslov et al. �12�,
valid for partially ionized gases �6�. For sufficiently high
pressures, the LTE formulation is found to be as accurate as
a full nonequilibrium Navier-Stokes solution.

The motivation of the present contribution is threefold.
�1� The restriction to mixtures of homonuclear gases in

Murphy’s theory strongly limits its field of application. In
this contribution, this restriction is removed and a general
formulation equivalent to the model of Ern and Giovangigli
is provided. Contrary to their model, however, we have tried
to reduce the mathematical complexity as much as possible
and rely upon physical arguments where possible. The ob-
tained formulation is well-suited for numerical implementa-
tion. In particular, the expressions for the LTE transport co-
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efficients are readily available and do not require the
computationally expensive evaluation of thermodynamic de-
rivatives using finite differences.

�2� Our closed form for the elemental diffusion fluxes
allows one to determine a more general expression for the
LTE heat flux vector than the one proposed by Butler and
Brokaw. Indeed, in this contribution a correction to �R is
introduced, together with the concept of elemental heat trans-
fer coefficients. The final formulation of the heat flux vector
presented in this work is not formally identical to the results
proposed in previous models; it will be shown that this is
necessary to correctly analyze heat transfer phenomena in
chemically reacting flows, in particular when interpreting
measurements of thermal conductivity coefficients.

�3� As will become clear from the numerical results given
at the end of this paper, this formulation provides a useful
tool to analyze diffusion phenomena in mixtures under
chemical equilibrium and in those which slightly depart from
that condition.

In the following sections, we will concentrate only on
neutral mixtures, referring the extension to ionized condi-
tions to a future publication. Although we will focus on the
particular case of air mixtures, well-suited for Earth entry
applications �our particular field of research�, we wish to
point out that the presented LTE formulation is applicable to
any chemically reacting flow near LTE and in particular the
hydrocarbon-air mixtures used for combustion.

II. SPECIES ORDERING AND NOMENCLATURE

To make this text more accessible, we find it useful to first
introduce some important concepts and symbols.

We represent mixtures of perfect gases by means of a

finite set of Nsp species S̃, amongst which we furthermore

distinguish between Nc “independent species” Ẽ consisting of
pure elements �as such as in their stable form� and Nr “com-

bined species” R̃, for instance:

5-species air Ẽ= �O,N� ,R̃= �O2,N2,NO�, and S̃=R̃� Ẽ,
valid for LTE mixtures at pressures above 0.01 atm and for
temperatures between 300 and 8000 K.

We accordingly define the three sets of indexes R
= �1, . . . ,Nr�, E= �Nr+1, . . . ,Nsp�, and S=R�E. We charac-
terize the chemical composition of the mixture in terms of
mole fractions xs=ns /n, where ns and n stand for the molar
densities of individual species and of the entire mixture. Al-
ternatively, we can also characterize the mixture composition
by means of the mass fraction ys=�s /�, where �s and � stand
for the mass densities of the individual species, respectively,
the full mixture.

We will indicate the number of atoms of element e con-
tained in a species s by �s

e, for instance, for NO, �3
5=1 while

for O2, �1
4=2. This enables us to define the mole fractions Xe

and mass fractions Ye of elements in the mixture as follows:

Xe =

�
s�S

�s
exs

�
e�E

�
s�S

�s
exs

; Ye = �
s�S

�s
eys

Me

Ms
, �2�

where Ms is the molar mass of species s, related to the mix-
ture molar mass M =�s�SxsMs.

We introduce the diffusion velocity Vs with respect to the
mass-averaged velocity of the mixture u. The molar and
mass fluxes of species s are then given by, respectively,
Ws=nsVs and Js=MsnsVs. The mole and mass fluxes of el-
ement e are then given by

Ne = �
s�S

�s
eWs; Je = MeNe �e � E� . �3�

We use bold type fonts to indicate vectors in the physical
space. With “bar notation,” we refer to arrays containing spe-
cies, elemental, or reactive properties, with respective
lengths of Nsp, Nc, and Nr. For instance, the array of length
Nc containing the mass diffusive fluxes of elements is written

J̄ = �
JNr+1

JNr+2

]

JNr+Nc

	 . �4�

III. COMPUTATION OF COMPOSITION UNDER LTE

A. Species continuity equations

We consider the commonly encountered flow regime in
which chemical reactions are relatively rare with respect to
elastic collisions, such that they do not play an important role
in the thermalization of species in the flow �unlike the “ki-
netic chemical equilibrium regime” considered in the first
part of Ref. �23�, for which chemical reactions and elastic
collisions are treated on the same level�. The concentration
of each species may then be determined from a respective
species continuity equation �1�:

�t��ys� + � · ��ysu� + � · �MsWs� = �̇s �5�

where u stands for the mass-averaged velocity of the mixture
and �̇s is the mass production/destruction term �27� of spe-
cies s due to chemical reactions. The number fluxes of spe-
cies respect the mass conservation constraint

�
s�S

MsWs = 0 �6�

and obey the Stefan-Maxwell equations �13,14�

SW̄ = � �x1

]

�xNsp

	 = d̄ �7�

where

Sij =
M

�

xi

Dij f ij�L�
�i � j� ,

Sij = −
M

�
�
k�i

xk

Dikf ik�L�
�i = j� , �8�

for i , j ,k�S. Herein, d̄i=di= �xi is the ith vector of driving
forces. To keep the analysis as simple as possible, we have

CLOSED FORM FOR THE EQUATIONS OF CHEMICALLY… PHYSICAL REVIEW E 72, 011204 �2005�

011204-3



neglected effects of pressure and thermal diffusion; note,
however, that these could be included without any particular
problem. The binary diffusion coefficients Dij are symmetric
Dij =D ji and the symmetric factor f ij�L� takes into account
the contribution of Laguerre-Sonine polynomials �14,28–30�
of order L�2 with the definition f ij�1�=1 �increasing the
order L of the Laguerre-Sonine polynomials yields higher
accuracy of the spectral method used to define the transport
systems �7��.

The binary diffusion coefficients can be further expressed
as

Dij =
3

16n

2�kBT

mij

1

	̄ij
11

, �9�

where kB is Boltzmann’s constant and the reduced mass of
the particle pair ij is written as mij =mimj / �mi+mj� �in kg�.
Readers eager to implement the results derived in this paper

may find detailed curve fits for the collision integrals 	̄ij
11�T�

of air mixtures in Ref. �31�.

B. Stoichiometric matrix

When chemistry is sufficiently fast with respect to other
macroscopic processes in the flow �convection, diffusion,
…�, we may compute the chemical composition from statis-
tical mechanics for given values for the pressure, tempera-
ture, and elemental mass fractions �31� instead of solving
Eqs. �5�. To this end, we need to specify Nr independent
reactions

�
s�S


s
rAs = 0 �r � R� �10�

where the stoichiometric coefficients are normalized such
that 
r

r=1 and As is a symbolic notation for species s. The
mole fractions xs=ns /n obey the following relations:

�
s�S


s
r ln xs = ln Kx

r �r � R� , �11�

where Kx
r�T , p� is the equilibrium constant in terms of mole

fractions, linked to the equilibrium constant in terms of par-
tial pressures Kp

r �T� by

ln Kx
r = ln Kp

r − ln p�
s�S


s
r.

In addition, we should fix the local elemental composition

�
s�S

�s
eys

Me

Ms
= Ye �e � E� �12�

where the mass fraction of elements Ye is computed from the
solution of a set of suitable advection-diffusion equations to
be presented shortly �Eq. �18��.

For further mathematical convenience, we gather the 
s
r

and �s
e into a “stoichiometric matrix” M:

Mrs = 
s
r �r � R,s � S� ,

Mes = �s
e �e � E,s � S� .

Following Butler and Brokaw �2�, we note that M has the
following structure for the chosen ordering of species:

M = � I − BT

B I
� �13�

where

Be−Nr,r
= �r

e �r � R,e � E� .

As an example, for a five species air mixture, M should be

�14�

The particular structure of the stoichiometric matrix leads to
several useful results. For instance, if we multiply the upper

part of M by the array of species enthalpies h̄, we find the
array of reaction enthalpies �h:

�I − BT�h̄ = �h , �15�

where �hr=�s�S
s
rhs for r�R. Moreover, by multiplying

the lower part of M by the species diffusion fluxes, we
obtain the array of elemental diffusion fluxes:

�B I�W̄ = N̄ . �16�

We can exploit the above result to express the array of spe-

cies diffusive fluxes W̄ in terms of the diffusive fluxes of

combined species W̄R and independent species N̄. By using
the following trivial factorization of the identity matrix I, we
see that

�17�

The reader should keep in mind this relation, which will be
used repeatedly in the analysis that ensues. Practical details
on how to efficiently determine the equilibrium composition
from Eqs. �10�–�12� can be found in an earlier publication
�31�.

C. Elemental continuity equations for neutral mixtures

As pointed out by Murphy, we need to solve additional
element advection-diffusion equations to determine the el-
emental composition of the mixture �21,26�. To obtain these
equations, we multiply Eqs. �5� by �s

eMe /Ms and sum over
all species. Since no elements are created in the considered
chemical reactions, the mass fraction of any element e obeys
the following equation:
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�t��Ye� + � · ��uYe� + � · Je = 0 �e � E� . �18�

In what follows, we will show that under LTE conditions, the
mass diffusion flux of elements Je can be expressed in terms
of gradients of elemental mass fractions and temperature. For
simplicity, we consider flows at constant pressure, consistent
with the neglect of pressure diffusion in Eqs. �7�. Once
again, we remark that this does not imply any fundamental
limitation and pressure diffusion could be included easily if
needed. The reader may note that Eqs. �18� are expressed in
terms of element mass fractions, whereas previous models
were based upon mole fractions or number densities of ele-
ments. We believe this to be more advantageous for two
main reasons:

�1� mathematical elegance: The element mass fraction
appears in a natural manner in the right-hand side of Eqs.
�12�; the mathematical analysis hence turns out to be easier if
one continues to work in terms of this variable.

�2� numerical convenience: Many existing flow solvers
allow one to easily add advection-diffusion equations for a
generic scalar quantity �; the formalism proposed here �Eqs.
�18�–�30�� fits nicely within such a numerical framework. In
addition, by using the global continuity equation, Eqs. �18�
may be cast under a nonconservative form

��tY
e + ��u · � �Ye + � · Je = 0 �e � E� , �19�

which tends to be much more robust from a numerical point
of view.

D. Elemental diffusion coefficients

Proposition 1. In a flow of reacting mixtures under LTE
and at constant pressure, the elemental fluxes are in general
nonzero and can be explicitly expressed as a function of the
gradients of temperature and elemental composition, i.e.,

Je = − �De
T�T,p,Ȳ� � T − �

f�E
�Def�T,p,Ȳ� � Y f �e � E� .

�20�

Proof. From Eqs. �6� and �7� the species diffusion fluxes can
be expressed as a linear combination of species concentration
gradients

W̄ = S−1�x = − nD̃�x �21�

where D̃sm= D̃sm�T , p , Ȳ� for s ,m�S.

From Eqs. �10�–�12�, since xs=xs�T , p , Ȳ�, it follows that

�xs =  �xs

�T


Ye,p
� T + �

f�E
 �xs

�Y f
T,p

� Y f �s � S,e � E� .

�22�

Therefore from Eqs. �3�, �21�, and �22�, Eq. �20� can be
easily retrieved.

The explicit determination of the functions De
T and Def

requires a deeper analysis presented in the remaining part of
this section and detailed in the Appendix.

Considering the gradient of Eq. �11� written in matrix
form, making use of Eqs. �7� and introducing Eq. �17�, one
has

�Ã B̃T�S� I 0

− B I
��W̄R

N̄
� =

�T

RuT2� �h1

]

�hNr

	 � �̄ , �23�

where Ãij =ij /xj, B̃ij
T =−Bij

T /xj. Moreover, in Eq. �23� we
make use of van’t Hoff’s relation �27� dlnKp

r /dT
=�hr / �RuT2�, as suggested in Ref. �2�, and we make the
assumption of constant pressure, consistent with the neglect
of pressure diffusion. This leads to the definition of the com-

ponents of �̄ as

�̄r =
�hr

RuT2 � T �r � R� , �24�

where �hr=�s�S
s
rhs is the enthalpy of reaction r already

introduced in Eq. �15� and Ru is the universal gas constant.
From Eq. �23� and after some straightforward algebra, we
easily find the following expression relating the number flux

of elements N̄ and of the combined species W̄R:

YW̄R + ZN̄ = �̄ , �25�

where the expressions of Y�Nr�Nr� and Z�Nr�Nc� are
given in the Appendix, Sec. II. Following a similar strategy
for the lower part of the equilibrium system �Eq. �12�� we
have that

�B C�S� I 0

− B I
��W̄R

N̄
� = � �Y1

]

�YNc
	 � �̄ , �26�

where �̄e= �Ye for e�E. The two matrices B�Nc�Nr� and
C�Nc�Nc� are determined expressing the mass fraction gra-
dients in terms of the species mole fraction gradients, di-
rectly related to the driving forces for diffusion phenomena
�see the Appendix, Sec. 2�. After some more straightforward
algebra, we transform the above result into an additional re-

lation between W̄R and N̄:

TW̄R + KN̄ = �̄ , �27�

where the components of T�Nc�Nr� and K�Nc�Nc� are

again given in the Appendix, Sec. 2. Replacing W̄R from Eq.
�25� in Eq. �27�, the number fluxes of elements follow from
the solution of the linear system �28�:

S N̄ = − TY−1�̄ + �̄ , �28�

where S =�K−TY−1Z�. Equations �25� and �27� are still
equivalent to the original singular system �7�, but with a
particular right-hand side, valid only under LTE. As a con-
sequence, the system �28� inherits the singular character of
Eqs. �7� and an additional mass conservation constraint is
still needed to regularize the problem:

�̄TN̄ = 0 �29�

where �̄e=Me for e�E.
The solution of the system �Eqs. �28� and �29�� represents

the last step for the determination of the expression of the
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elemental multicomponent diffusion coefficients Def and
thermal demixing coefficients De

T, for which detailed expres-
sions may be found in the Appendix, Sec. 4. By inverting S,
accounting for Eq. �29� �see the Appendix, Sec. 3�, we easily
find that

Je = − �
f�E

�Def � Y f − �De
T � T . �30�

The second term in the right-hand side of the above result
will in general generate nonzero elemental diffusion fluxes
even when the initial elemental composition is uniform.

IV. DIFFUSIVE TRANSPORT OF ENTHALPY

In reacting flows, the diffusion of species affects the mix-
ture energy balance through the heat flux term:

qd = �
s�S

Wshs. �31�

In a general nonequilibrium case, to compute qd, one should
determine all the Ws as a solution of Eq. �7� and then com-
pute the above linear combination, as done in the methodol-
ogy of Refs. �12,23,26�. On the other hand, under thermo-
chemical equilibrium, Eq. �31� can be cast under a particular
form which avoids the computation of the Ws. A first step in
this direction was made by Butler and Brokaw �2�, who
showed that, under the assumption of vanishing elemental
fluxes, the diffusive heat flux takes the form of Eq. �1�. In
this section, we extend the work of Butler and Brokaw to the
more general case when elemental fluxes are nonzero.

Proposition 2. For a mixture of reacting gases under ther-
mochemical equilibrium, at constant pressure, the diffusive
heat flux is proportional to both temperature and elemental
concentration gradients, and can be expressed as

�
s�S

Wshs = − ��R + �D� � T − �
e�E

�EL
e � Ye. �32�

Proof. Observing that the product W̄Th̄ takes the follow-
ing shape in matrix form:

the diffusive heat flux can be easily split into a contribution
due to the transport of reaction enthalpies �Eq. �15�� by com-
bined species and of formation enthalpies of elements �Eq.
�16��:

W̄Th̄ = h̄TW̄ = �hTW̄R + h̄EL
T N̄ , �33�

where h̄ELe−Nr
= h̄e for e�E. Using Eq. �25�, we easily find

that

W̄Th̄ = − �R � T − ��hTY−1Z − h̄EL
T �N̄ , �34�

where �hTY−1�̄=−�R�T. Next, expressing the terms propor-

tional to N̄ in terms of �T and �Ye using Eqs. �28� and �29�,
we easily retrieve Eq. �32�. Detailed expressions for �R, �D,
and the �EL

e may be found in the Appendix, Sec. 5.
We see that in an LTE flow, the diffusive heat flux vector

consists of three different part.
�1� The “thermal reactive conductivity” coefficient �R is

identical to the well-known results by Butler and Brokaw
�2,3� and takes into account diffusive transfer of species en-
thalpies in the absence of elemental diffusion.

�2� The “thermal demixing conductivity” coefficient �D
corrects for the additional diffusive heat transfer that occurs
due to nonzero elemental diffusive fluxes when elemental
mass fraction gradients are zero �see the remark below Eq.
�30��.

�3� Finally, the “elemental heat transfer coefficients” �EL
e

take into account heat transfer due to elemental demixing
driven by gradients in elemental composition.
At this point, it is interesting to comment on the well-known
thermal conductivity measurements by Asinovsky et al. �32�
and Devoto et al. �33�. In their experiments, the total LTE
thermal conductivity �Tot is determined from the radial en-
ergy balance in a steady, axisymmetric arc plasma of very
large ratio of length over diameter. One might wonder which
of the above three terms is actually being measured. Because
flow velocities and axial variations in the plasma are very
small, the elemental continuity equations �18� reduce to the
simple statements that the radial fluxes of elements vanish:

�rJe

�r
= 0 ⇒ Ne = const = 0 �e � E�

since no elements go into the isolated walls of the arc. From
Eq. �34�, we then see that the measured thermal conductivity
coefficient �Tot takes into account only the conventional ther-
mal conductivity coefficient � and the thermal reactive con-
ductivity: �Tot=�+�R; the �D and the �EL

e do not play a role.
Similarly, it would appear that in steady thermal boundary
layers, only �R effectively contributes to the heat flux to the
wall. This important physical observation has been the mo-
tivation for splitting the thermal conductivity coefficients un-
like in previous LTE formulations.

V. CLOSED FORM OF THE GOVERNING EQUATIONS

Thanks to the results of Secs. III D and IV, the full system
of the governing equations of chemically reacting gases un-
der LTE can hence be reduced to the system �35� below,
formally equivalent to the “conventional” Navier-Stokes
equations extended with a set on Nc additional advection-
diffusion equations for each of the mixture elements:

�t��Ye� + � · ��uYe�

= � · ��De
T � T + �

f�E
�Def � Y f��e � E� �35a�

�t� + � · ��u� = 0, �35b�
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�t��u� + � · ��u � u� + � p = � · �̂ , �35c�

�t���e + u2/2�� + � · ��u�h + u2/2��

= � · ��� + �R + �D� � T + �
e�E

�EL
e � Ye� + � · �u:�̂� .

�35d�

Herein, e and h are, respectively, the mixture energy and
enthalpy per unit mass, p stands for the static pressure, and �̂
represents the tensor of viscous stresses:

�̂ij = �� �ui

�xj
+

�uj

�xi
−

2

3
ij � · u�

computed using Stokes’ hypothesis of negligible bulk viscos-
ity effects. Practical details on how to determine the thermo-
dynamic properties e ,h ,� and the conventional transport
properties � and � needed to solve the system �35� can be
found in �30,31,34�. Expressions of the LTE transport prop-
erties De

T, Deq, �R, �D, and �EL
e may be found back in the

Appendix.
By writing the governing equations of chemically reacting

flows under LTE as proposed in the system �35�, the species
diffusion fluxes and the enthalpy fluxes depend in an explicit
manner on the solution unknowns, which is advantageous for
their implementation in an implicit CFD code. Moreover, the
physical effects leading to �de�mixing and its influence on
the mixture energetic behavior clearly show up.

VI. AN ILLUSTRATIVE EXAMPLE

To present the application of the concepts introduced in
the previous sections, we select as an example the mixture
defined in Sec. II. The results presented below have been
obtained extending the existing thermodynamics and trans-
port library MUTATION �30� and using a second-order
Laguerre- Sonine approximation for the computation of the
elements of the matrix S in Eq. �8�. To define a range of
validity of the choice of species previously presented, we
show in Fig. 1 the composition of an 11 species air mixture
as a function of temperature for a reference pressure and
elemental composition. We wish to stress the dependence of
composition on elemental fraction �Eq. �12�� whose influ-

ence on mixture composition is discussed in details in Ref.
�26�. From the species evolution visible in the figure and
from previous studies on the influence of species choice on
mixture energetic behavior �31�, we indicate 8000 K as the
upper limit of the temperature range in which the transport
properties previously introduced should be computed.

We now turn our attention to the evolution of the elemen-
tal multicomponent diffusion coefficients Deq. For the par-
ticular case of a binary mixture, considering the expressions
given in the Appendix, the diagonal elements are seen to be
both equal to a common value D while the off-diagonal ele-
ments are equal to −D. For more general mixtures containing
three or more elements, the elemental diffusion coefficient
matrix will in general no longer have this elegant symmetric
form. As observed by Murphy �20�, for binary mixtures, the
mass conservation constraint allows one to collect the diag-
onal and off-diagonal diffusion coefficients to form only one
“total” elemental multicomponent coefficient for each ele-
ment. Although our formulation is valid for mixtures of an
arbitrary number of elements, we will here use this simplifi-
cation to analyze demixing for the considered air mixture.

Since �YO=−�YN in the air mixture, the oxygen and
nitrogen diffusion fluxes read

JO = − �DO
Tot � YO − �DO

T � T , �36a�

JN = − �DN
Tot � YN − �DN

T � T , �36b�

where DO
Tot=DN

Tot=2D. The presence of negative off-diagonal
diffusion coefficients does not pose problems since DO

Tot and
DN

Tot themselves are positive, as shown in Fig. 2. This result
implies that the first term in the right-hand side of Eq. �36�
will tend to smooth out variations of elemental mass frac-
tions caused by temperature gradients. In Fig. 3 we show the
thermal demixing coefficients plotted as a function of tem-
perature. As for the total elemental multicomponent diffusion
coefficients, the thermal demixing coefficients are not inde-
pendent and as a consequence of mass conservation �Eq.
�29��, DO

T =−DN
T . We observe a highly nonlinear behavior of

these coefficients including the presence of a maximum just

FIG. 1. Composition of an 11 species LTE air mixture at 1 atm
�YO=0.23� �O2,N2,O,N,NONO+,O+,N+,O2

+ ,N2
+ ,e−� �the concen-

trations of diatomic ions are negligible and hence do not appear�.

FIG. 2. Elemental total multicomponent diffusion coefficients
for a five species air LTE mixture �this graph applies to both N and
O due to the identity DN

Tot=DO
Tot�.
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before 4000 K and a minimum one around 7000 K. The
maximum and the minimum correspond to the dissociation
of O2 and N2 and we observe that around 5500 K a change in
sign takes place in DO

T . This shows that, at low temperatures,
oxygen will be driven in the direction opposite to the tem-
perature gradient, while in higher temperature regions, the
inverse phenomenon will take place. Figures 2 and 3 are
obviously much more useful to predict and analyze diffusion
phenomena in flows under LTE than the original set of Eqs.
�5�. A further step in the prediction of the effects of diffusion
on the behavior of equilibrium mixtures is done by analyzing
the diffusive transport of enthalpy. In the following pictures
we present the thermal reactive conductivities introduced in
Sec. IV. To clarify the analysis and discussion of the results
we introduce the following notation:

��: represents the sum between the thermal reactive and
demixing conductivities defined as ��=�R+�D.

�SM: represents the ratio between the diffusive heat flux
computed as �s�SWshs and a unity temperature gradient,
where Ws is the solution of Eq. �7� obtained as suggested in
Ref. �30� in the absence of elemental concentration gradi-
ents.

�BB: represents the reactive conductivity computed using
the formula of Ref. �3�.

From Fig. 4 we see that there is a perfect match between
�1� �� and �SM and �2� �R and �BB, indeed from their defi-
nitions ��=�SM and �R=�BB. On the other hand, 20% differ-
ences between these respectively reactive conductivities due
to demixing are visible �see Fig. 5� The sign of �D depends
on temperature, showing that demixing may increase or de-
crease the heat flux depending on the local temperature in the
mixture.

We now come to the last concept introduced in Sec. IV
which deals with elemental heat transfer coefficients. As al-
ready observed for the elemental multicomponent diffusion
coefficients, in the particular case of a binary mixture we can
introduce a total elemental heat transfer coefficient �EL

Tot

which will lead to the following heat flux contribution:

− �
e�E

�EL
e � Ye = − �EL

Tot � YO, �37�

where �EL
Tot=�EL

O −�EL
N . As a consequence of the definition of

the elemental multicomponent diffusion coefficients, in the
particular case of a binary elemental mixture, the elemental
heat transfer coefficients are equal and opposite in sign �see
the Appendix Sec. 5� giving rise to the �EL

Tot depicted in Fig.
6. There we see the �EL

Tot to be positive until around 8000 K,
showing that the presence of an oxygen elemental gradient
will give rise to an energy flux in the opposite direction for
the considered neutral mixtures up to that temperature; be-
yond this temperature the effect is reversed.

VII. CONCLUSIONS

In this paper, we have shown that under conditions of
LTE, the equations of chemically reacting flows can be re-
duced to an elegant system consisting of the conventional
Navier-Stokes equations �mass, momentum, energy� comple-
mented by an advection-diffusion equation for the mass frac-
tion of each chemical element in the mixture. The obtained
formalism is closed in the sense that diffusive fluxes are
directly expressed in terms of gradients of the solution un-
knowns, unlike other formulations in which these fluxes are

FIG. 3. Elemental thermal demixing coefficients for a five spe-
cies air LTE mixture �this graph applies to both N and O due to the
identity DN

T =−DO
T �.

FIG. 4. Thermal reactive conductivities for a five species air
LTE mixture.

FIG. 5. Thermal demixing conductivity for a five species air
LTE mixture.
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obtained in an implicit manner, by solving the full system of
Stefan-Maxwell equations.

Our derivation is rigorous, up to the approximations of
negligible pressure and thermal diffusion; as said, this is not
a fundamental restriction and the reader may easily add these
effects if desired. Several new LTE transport coefficients ap-
pear.

�1� The elemental advection-diffusion equations contain
Nc

2 elemental multicomponent and Nc thermal demixing co-
efficients. While the matrix of elemental multicomponent
diffusion coefficients takes a particularly simple form for the
binary mixtures considered in the application, it is in general
nonsymmetric.

�2� In the energy equation, the well-known thermal reac-
tive conductivity coefficient �due to Butler and Brokaw�
takes into account diffusive transport of species enthalpies in
the absence of elemental demixing. An additional demixing
thermal conductivity coefficient and a set of Nc elemental
heat transfer coefficients correct for the additional flow of
heat due to elemental demixing caused by temperature re-
spectively elemental fraction gradients.

Detailed expressions of the LTE transport coefficients
have been included in the Appendix; their implementation on
a computer is straightforward.

From a numerical point of view, we believe that our
closed formulation is considerably more advantageous than
other existing LTE formalisms for two reasons:

�1� The solution unknowns and their derivatives appear
explicitly in the equations. Hence when performing a finite-
element or finite-difference discretization, the Picard Jaco-
bian of the discrete equations can be obtained analytically
without difficulty. This is not the case for open LTE formu-
lations, in which the Jacobian of the diffusive fluxes can only
be computed numerically by means of finite-differences.

�2� The formulas given in the Appendix do not require
numerical computation of finite-differences of thermody-
namic variables; doing so is computationally very expensive
because for each finite-difference step, the mixture composi-
tion needs to be recomputed using a Newton iterative solver.

From a physical point of view, the derived transport co-
efficients provide a useful tool for the qualitative and quan-
titative understanding of diffusive phenomena in chemically

reacting flows at and near LTE. For instance,
�1� graphs such as those presented in this paper can be

used to make an estimate of the degree of demixing to be
expected in a chemically reacting flow prior to a numerical
calculation. Based upon this knowledge, one may then de-
cide whether or not to include the effect of demixing in the
calculation.

�2� Full nonequilibrium calculations tend to yield exces-
sively large amounts of information. If the flow is not too far
from LTE, then graphs of LTE transport properties may be
used to obtain a qualitative understanding of the computed
species and temperature fields.

We hope that our results will be of use to other research-
ers working on the simulation of chemically reacting flows,
in particular in the field of combustion modeling. We are
currently developing an extension to ionized flows of the
theory presented herein, which we intend to apply to model
thermal arc and inductively coupled plasmas of considerably
chemical complexity.
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APPENDIX: DETAILED DERIVATION

In this section we provide detailed derivations of results
derived in Secs. III and IV and used to obtain the numerical
values presented in Sec. VI. These derivations can also be
used as guidelines for the practical implementation.

1. Species diffusion

The species diffusion fluxes obey the Stefan-Maxwell
equations introduced in Sec. III A and recalled hereafter:

M

�
�
j�S

� xiW j

Dij f ij
−

xjWi

Dij f ij
� = � xi = di �i � S� . �A1�

In matrix form, the previous equation reads

SW̄ = d̄ �A2�

where

Sij = xiM/��Dij f ij� �i � j�

Sij = �
��S/�i�

− x�M/��Di�f i�� �i = j� .

For mathematical convenience, we split the matrix S into
four components, defined as follows:

S = �S1 S2

S3 S4
� , �A3�

where S1i,j
=Si,j �i , j�Nr�, S2i,j−Nr

=Si,j �i�Nr ;Nr� j�Ns�,
S3i−Nr,j

=Si,j �Nr� i�Ns ; j�Nr�, and S4i−Nr,j−Nr
=Si,j �Nr� i , j

�Ns�.

FIG. 6. Elemental total heat transfer coefficients for a five spe-
cies air LTE mixture.
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2. Matrix assembly

The first part of the system defining the equilibrium con-
dition for each of the Nr reactions �Eqs. �10� and �11�� reads

�
s�S


s
r ln xs = ln Kp

r − ln p�
s�S


s
r �r � R� . �A4�

Taking the gradient of the previous equation, assuming con-
stant pressure, and using the van’t Hoff’s relation, we have
that

�
s�S


s
r

xs

� xs =
�hr

RuT2 � T �r � R� . �A5�

Substituting the Stefan-Maxwell equations �Eq. �A2�� into
the matrix form of Eq. �A5�, we obtain that

�Ã B̃T�d̄ = �Ã B̃T�SW̄ = �̄ ,

where Ãij =ij /xj and B̃T=−Bji /xj. Introducing the unit ma-
trix I and highlighting the structure of S, the previous rela-
tion reads

�A6�

From Eq. �A6� one easily verifies the validity of Eq. �25�
introduced in Sec. III D, recalled hereafter:

YW̄R + ZN̄ = �̄ �A7�

where Y= Ã�S1−S2B�+ B̃T�S3−S4B� and Z= ÃS2+ B̃TS4. Note

that Y is symmetric; it may be shown that ÃS1 and B̃TS4B are

symmetric and ÃS2B=−�B̃TS3�T.
The lower part of the equilibrium system, needed to im-

pose the elements mass conservation �Eq. �12��, reads

�
s�S

�s
eys

Me

Ms
= Ye �e � E� .

Taking the gradient of the previous equation, we have that

Me �
s�S

�s
e�ys

Ms
= � Ye. �A8�

We now introduce the matrix F representing the link be-
tween ��ys /Ms� and �xs. Species mass fractions are related
to the respective mole fractions by means of the following
relation:

ys =
�s

�
i�S

�i

=
Msns

�
i�S

Mini

=
Msxs

�
i�S

Mixi

.

The gradient of the previous relation reads

�ys

Ms
=

�xs

�
i�S

Mixi

−
xs

��
i�S

Mixi�2
�
i�S

Mi � xi

=
�xs

M
−

xs

M2 �
i�S

Mi � xi

= �
i�S

Fsi � xi, �A9�

where M is the mixture molar mass, and the elements of the
matrix F are defined as

Fsi = ��1 − ys�/M if s = i

− xsMi/M
2 if s � i .

� �A10�

Introducing the matrices B̂eq=BeqMe and Ĉe�=e�Me for
e ,��E, and q�R, and making use of the matrix F to ex-
press Eq. �A8� in matrix form, we have that

�̄ = �B̂ Ĉ��F1 F2

F3 F4
�d̄ = �B̂ Ĉ��F1 F2

F3 F4
�SW̄

= �B̂ Ĉ��F1 F2

F3 F4
��S1 S2

S3 S4
�� I 0

− B I
��W̄R

N̄
�

= �B C��S1 S2

S3 S4
�� I 0

− B I
��W̄R

N̄
�

= �B C��S1 − S2B S2

S3 − S4B S4
��W̄R

N̄
� , �A11�

where B= B̂F1+ ĈF3 and C= B̂F2+ ĈF4. From Eq. �A11� one
easily verifies the validity of Eq. �27� introduced in Sec.
III D, recalled hereafter

TW̄R + KN̄ = �̄ , �A12�

where T=B�S1−S2B�+C�S3−S4B� and K=BS2+CS4.

3. Linear systems solution

To obtain expressions for the elemental multicomponent
diffusion coefficients, we now solve Eqs. �A7� and �A12�
using straightforward Gaussian elimination, although other
techniques based upon iterative solvers are also possible.

First we solve the system �A7� with respect to W̄R and
then substitute the solution in Eq. �A12� which will be finally

solved for N̄ by computing Y−1. Then the element number
fluxes follow from the solution of the system �A13�:
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S N̄ = − TY−1�̄ + �̄ �A13�

where S =�K−TY−1Z�. Because of the singular character of
S , inherited from the matrix S, the mass conservation con-
straint

�̄TN̄ = 0, �A14�

where �e=Me for e�E, must still be applied to regularize S

�13�. This can be easily done by solving the following non-
singular linear system equivalent to Eqs. �A13� and �A14�
�30,35�:

�S + ��̄ � �̄�N̄ = �̄ , �A15�

where �̄=−TY−1�̄+ �̄. Indeed the matrix S �Nc�Nc� is such
that the null spaces of S and S T are, respectively, spanned

by the vectors R̄�RNc and L̄�RNc satisfying the conditions

R̄T�̄�0 and L̄T�̄�0. Therefore, for any nonzero parameter �
�with dimensions �moles m/�kg s���, ∃D =�S +��̄��̄�−1 such

that for a vector �̄�RNc and in the range of S , the solution
of the system �A15� is

N̄ = − D TY−1�̄ + D �̄ , �A16�

where N̄ satisfies both Eqs. �A13� and �A14�. From a practi-
cal point of view we suggest using � such that the regular-
ization term has the same order of magnitude as the elements
of the matrix S , for example, �=�i,j�E�S ij�/�Nc

2M2�.

4. Elemental diffusion coefficients

To identify the elemental multicomponent and thermal de-
mixing diffusion coefficients, we just need to extract the

components of N̄ from Eq. �A16� and put them in the form of
Eq. �20�, recalled hereafter

Je = MeNe = − �De
T � T − �

f�E
�Def � Y f . �A17�

The elemental multicomponent coefficients Def are related to
the elements of the matrix D, which are functions of ��R.
To eliminate this indeterminacy, characteristic of the solution
technique used, we correct the matrix components as fol-
lows:

D Pef
= D ef −

�
h�E

D eh

Nc
. �A18�

The reader may easily verify that for any physically accept-

able right-hand side vector �̄ such that �e�E�̄e= L̄T�̄=0, L̄
= �1, . . . ,1�T being the member of the null space of S T. In

addition, we have that D PL̄=0. Any vector k̄�RNc can be

written as the sum of a part parallel to and a part normal to L̄:

k̄= k̄� + k̄�. From the above, it follows that D Pk̄ is unique for

any k̄. In particular, D Pēi �where ēi= �0, . . . ,1 , . . . ,0�T� is
unique and hence all columns of D P are independent of �.
Finally the elemental multicomponent diffusion coefficients
read

�Def = − MeD Pef
�e, f � E� . �A19�

The elemental thermal demixing coefficients can be easily
computed by assembling the following expression and ex-
tracting the Nc components of the result:

�De
T =

Me

RuT2 �D PTY−1�h�e �e � E� . �A20�

5. Diffusive transport of enthalpy

The diffusive transport of enthalpy defined in Eq. �31� is
recalled hereafter

qd = �
s�S

Wshs = �hTW̄ + h̄EL
T N̄ . �A21�

Substituting Eqs. �A16� and �A18� into Eq. �A12� an expres-

sion for W̄R is found:

W̄R = Y−1�̄ − Y−1ZN̄ = �Y−1 + Y−1ZD PTY−1��̄ − Y−1ZD P�̄ .

�A22�

Substituting Eqs. �A22�, �A16�, and �A18� in Eq. �A21�, the
expression of the different contributions to the diffusive heat
flux are retrieved. The computation of �R, �D, and �EL

e results
from the straightforward application of the equations
�A23�–�A25� below, which require the computation of sev-
eral matrix products:

�1� The thermal reactive conductivity reads

�R = −
1

RuT2�hTY−1�h . �A23�

�2� The thermal demixing conductivity is given by

�D = −
1

RuT2 ��hTY−1ZD PTY−1�h − h̄EL
T

D PTY−1�h� .

�A24�

(3) The elemental heat transfer coefficients are obtained
as the components of the array

�̄EL
T = �hTY−1ZD P − h̄EL

T
D P. �A25�

While they may appear tedious in analytical form, these ma-
trix products can be easily implemented in an efficient man-
ner on a computer.
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